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Finite field perturbation theory coupled with configuration interaction techniques have been 
used to evaluate the components of the polarisability tensor of H 2 at and near its equilibrium 
internuclear separation. The values are fitted to a polynomial which then yields the derivatives of the 
polarisability with respect to internuclear distance. Our results compare favourably with theoretical 
values obtained by the use of highly accurate correlated wavefunctions. 
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Introduction 

The behaviour of atoms and molecules in an electric field is the subject of 
considerable interest from both the experimental and theoretical points of view. 
Most theoretical approaches to date have been based on the Hartree-Fock self 
consistent field theory coupled with a perturbation treatment [1-3], although 
for two-electron systems such as the helium atom and the hydrogen molecule it 
has been possible to carry out very accurate calculations using correlated wave- 
functions [4-6]. Configuration interaction (CI) and multiconfigurational self- 
consistent field (MCSCF) approaches have not been systematically explored in 
polarisabitity calculations, although recently some progress has been made in 
this direction by Watts and Buckingham [-7, 8]. The desirability of such calcula- 
tions was indicated by Kolker and Karplus [-3] a decade ago and even earlier 
by Hirschfelder [9], suggesting that severe overestimation of the parallel com- 
ponent of the polarisability of a diatomic molecule occurs if the Hartree-Fock 
wavefunction is used for the unperturbed ground state, since that type of function 
does not lead to the correct separated atom limit. The aim of the present work 
is to initiate CI and MCSCF type work to calculate polarisabilities and polar- 
isability gradients. Only a few calculations of polarisability gradients have so far 
been made, despite their importance in infra-red and Raman spectroscopy. The 
recent semiempirical work of Hush and Williams [10] aimed at filling this gap, 
by calculating the polarisability gradients of a number of diatomic molecules. 
It became apparent, however, that their work needs to be supported and ex- 
tended by ab initio calculations. To make a start in this direction the H z molecule 
was selected as the first example, since for this molecule Ko/os and Wolniewicz 
[-6] have obtained highly accurate theoretical values which can be used very 
conveniently for comparison purposes. The approach we adopted is to obtain 
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reasonably accurate full CI wavefunctions for the ground state as well as those 
excited states of the H2 molecule that are involved in the Rayleigh-Schr6dinger 
second order perturbation expression for a given polarisability tensor component. 
The basis functions used for this purpose are mixed sets comprising of ls Slater 
type orbitals and Gaussian functions. 

Computational Methods 

Consider a set of basis functions {q~} (assumed to be orthonormal-symmetry 
orbitals) which are used to construct the normalized two-electron unperturbed 
ground state (1S~-) wavefunction, hence given as 

7'0 = ~ Yi Yi 

where { Y~} is the full set of configurations of 1SO symmetry and {y~} is the set of 
variational constant coefficients. A typical configuration is given as 

Y~ = d{[~bk(1) q~t(2)] 2 -} [~(1) fi(2) --/~(1) ~(2)]}, 

where d is the antisymmetrizer and ~ and fl are the spin functions. 
In the presence of a field parallel to the molecular axis the point group of the 

molecule becomes Co~v and the Hamiltonian is now given as 

= OF o + F(x~ + x2) 

where ~ o  is the unperturbed Hamiltonian (within the Born-Oppenheimer ap- 
proximation). 

F is the electric field strength and ~t and ~2 are the dipole moment operators 
for electrons 1 and 2. 

The total, normalized wavefunction is now written as 

where {~i} now includes the set {Y i} but contains in addition all the possible 
configurations of 1S,+ symmetry as well and {Ci} is the set of variational 
constants for a given field F. 
Let 

E(F)  = ( 7  t I~1  7 t )  
and 

E0 = <TJ0 I~ol ~o). 
The parallel component of the polarisability tensor is defined as 

c~ll = ~z~ = - ( (32 E(F) /~  F2)F = o ,  

and since to second order 

E(F)  = E o - �89 all F z , 

~hl can be calculated from the limiting slope of the plot of E(F)  vs. F 2. This 
approach to the calculation of a given polarisability component is known as 
Finite Field Perturbation. 
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In the presence of a field F perpendicular to the molecular axis the total wave- 
function 7 ~ must include all the possible 1/i+ configurations since the Hamil- 
ton• is now 

~f = ~o + F(~I + ~2)- 

Hence the perpendicular component of the polarisability tensor can be calculat- 
ed as described above using the expression 

E ( F )  = E o - �89 ct x F 2 . 
Since 

the average static polarisability ~ is given as 

1 
= -y (~11 + 2~1) �9 

Using Rayleigh-Schr6dinger perturbation theory one obtains the following 
expressions which define the two polarisability components: 

all = 2 ~  [(Tt~ x~ +~2 IX,)t 2 
. E n  - Eo 

where {X.} is the set of aS+ type wavefunctions and {E,} is the corresponding 
set of energies; 

~ 1 = 2 ~  I(~~ ~vl +x2 IZ,)]: 
. E .  - Eo 

where {Z,} is the set of 1//+ type wavefunctions with {E,} as the corresponding 
set of energies. 

It is clear from the above expressions that in order to obtain good values of 
ajj and a• one needs to have good Z, a n d / / ,  type excited state as well as good 
ground state wavefunctions. To achieve this we have used a basic set of functions 
whose orbital exponents were chosen so as to minimize the ground state energy 
after which the basis was expanded by Gauss• functions whose orbital ex- 
ponents were optimized so as to minimize the energy of the lowest excited state 
(S, or / / , ) ,  since that state is expected to have the greatest effect on the given 
polarisability component. 

In the actual computations a set of Schmidt orthogonalized symmetry orbitals 
were constructed (which transform according to the irreducible representations of 
the D| point group) from the given set of Slater and Gauss• functions. The 
orthonormal orbitals were then used to construct the set of configurations. 
Most of the computational details have been fully described previously [11, 12]. 
In the calculation of mixed one-electron integrals t0 Gaussians were used per 
Slater orbital; in the case of two-electron integrals the number of Gaussians was 4. 
The expansion constants are those given by Huzinaga e t  al .  [13]. The polar- 
isability in each case was calculated by both the Rayleigh-Schr6dinger and the 
finite field perturbation methods. In all calculations complete agreement was 
found to four significant figures. 
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Table 1. The orbital bases used in the various calculations at an internuclear separation of 1.4 a.u. 

sa(1.1005), sn(1.1005), s~( 1.6331), s~( 1.6331) 
G0(1.0860) 
Ga(0.42), GB(0.42) 

Ga(0.42), GB(0.42), G](1.80), G~(I.80) 

p~A(0.04),p~(0.04) 

px~(0.04), p~B(0.04), p~,~,(0.175), p~,~ (0.175) 

Basic 5 orbital basis 

Additional orbitals used in the 7 orbital 
calculation of c~ 
Additional orbitals used in the 9 orbital 
calculation of c~ 
Additional orbitals used in the 7 orbital 
calculation of c~ 
Additional orbitals used in the 9 orbital 
calculation of 

s = 1s-type Slater orbital, G = 1s-type Gaussian function. The subscripts A, B, 0 refer to nuclei A, B 
and the midpoint of the internuclear axis respectively. Px is a normalized Gaussian lobe function, 
given as 

p~,(a) = N exp { - a [(x -- 0.1) 2 + y2 + z 2] } _ N exp { - a [(x + 0.1) 2 + y2 + z 2] }, 

N being the normalization constant. 
The orbital exponents are given in brackets. 

By extension of the above treatments it becomes possible to evaluate the 
various principal components of the hyper-polarisability tensor V. However, the 
results obtained are not thought to be definitive and sufficiently accurate to 
merit publication. To calculate V one needs much more accurate, directly corre- 
lated wavefunctions. 

All the calculations reported here were carried out on the CDC 6600 digital 
computer of Control Data Aust. Pty. Ltd., North Sydney. 

Calculations and Results 

The orbital bases used in the various calculations are listed in Table 1. In 
order to calculate ell the basic 5 orbital basis was extended by the addition of 
Gaussians centred on the nuclei to give the 7 and 9 orbital bases. The orbital 
exponents of these additional functions were successively optimized with respect 
to the energy of the lowest lying 1X~+ state. Calculations of ea were carried out in 
an analogous manner, using normalized Gaussian lobe functions of Px symmetry 
on both nuclei. The results of the calculations are summarized in Table 2. 
The enlargement of the 5 orbital basis brings about a significant improvement 
in the energy of the lowest l~u+ state but a much smaller improvement in the 
ground state energy, the latter lying close to the S limit of -1.160868 a.u. [141. 
The best calculated value of ell is actually higher than the "true" value of 6.383 
(calculated by Kotos and Wolniewicz [6"1). The addition of more a-type mole- 
cular orbitals to the basis could make this figure a little lower or higher even, 
eventually resulting in a limiting value that could be obtained by the use of a 
complete set of a functions. (In a subsequent calculation it was found that the 
effect of two more G-type molecular orbitals was to lower ell to approximately 
6.36, showing the non-monotonic nature of the convergence). In the case of e• 
the introduction of the first set of rc functions, although resulting in a reasonably 
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Table 2. Summary of the various calculations at an internuclear separation of 1.4 a.u. 

Number  of Number  of Number  of Energy of Energy of ell % 
basis ~X + type lz~+ or H~ type lowest lowest or 
functions configurations configurations state (a.u.) state (a.u.) (a.u.) (a.u.) 

5 9 6 - 1.158938 -0.524153 5.413 
7 16 12 -1 .159700 -0.622699 6.250 
9 25 20 - 1.160283 -0.636925 6.399 
7 11 5 -1 .158952 -0.672514 1.784 
9 15 10 -1 .160407 -0.678235 4.506 

good value for the energy of the lowest 1 + H u state, does not produce a 
reasonable value for e• However this is remedied once the second set of r~ 
orbitals is introduced. Curiously, the energy of the lowest 1//+ state was calculat- 
ed to be lower than the energy of the lowest 1S~+ state, probably as a result of 
some angular correlation having been allowed for in the former case. 

In order to study the behaviour of the two polarisability components with 
internuclear distance and to calculate the polarisability gradients, the two 9 
orbital basis sets were used. The orbital exponents were varied according to the 
equation: 

ai(R) = a~(Ro) [1 - 0.2(R - Ro) ] 

where ai(R) is a given orbital exponent at an internuclear distance R and R o is 
the equilibrium internuclear separation (1.4 a.u.). 

Consequently, the variation in orbital exponents is by a constant factor of 
0.98 for an increase of 0.1 a.u. in the internuclear separation; it was chosen on 
the basis of a H z calculation by McLean et al. [15], who optimized the orbital 
exponents at a number of internuclear distances. The results are summarized in 
Table 3. Use of the above scaling procedure resulted in energy levels with 
curvatures close to the accurate values as calculated by Kotos and Roothan [16]. 
( 0E ) 
By correct curvature correct behaviour o f - ~  vs. R is meant. 

Using the more usual scaling procedure, i.e. 

ai(R) = ai(Ro) Ro/R 

a i ( R o ) [ l - 0 . 7 2 ( R - R o )  ] for R ~ R  o, 

1 + the curvature of the energy level of the lowest 2; u state was too large, leading 
to too great a variation in all. 

The variation of polarisability with internuclear distance is best expressed as 
a power series, hence the results of Table 3 were fitted to the following polynomial 
using a least squares procedure: 

a ( R )  = a + b ( R  - R o )  + c ( R  - Ro)  2 q- d ( R  - N o )  3 . 

The constant a is the polarisability at the equilibrium internuclear separation 
Ro, b, 2c, and 6d are the first, second and third polarisability gradients re- 
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Table 3. Parallel and perpendicular components of the static polarisability of Hz at different values 
of the internuclear separation, calculated using the 9 orbital basis sets 

Internuclear all cr177 
separation 
(a.u.) (a.u.) (a.u.) 

1.20 5.210 3.854 
1.30 5.787 4.182 
1.35 6.089 4.344 
1.40 6.399 4.506 
1.45 6 . 7 1 8  4.674 
1.50 7.045 4.845 
1.60 7.718 5.187 

Table 4. The polarisability and polarisability gradients as given by the polynomial ~(R) resulting 
from this and other calculations (given in a.u.) 

a b c d Ref. 

all 6.399 6.295 1.615 -0.627 This work 
6.381 6.599 2.078 -0.347 Kofos and Wolniewicz [-3] 
6.114 7.034 4.948 2.98 Ishiguro et  al. [2] 
6.349 Wilkins and Taylor [ 17] 

4.508 3.306 0.313 0.067 This work 
4.578 3.223 0.202 - 0.339 Ko~os and Wolniewicz [3] 
4.447 4.043 2.803 - 0.31 Ishiguro et  al. [2] 
4.912 Wilkins and Taylor [- 17] 

spectively at R = R0. Results of this fit for all and ~ are present in Table 4, 
where we have also listed corresponding results of Kotos and Wolniewicz (cal- 
culated for the range 1.20 < R _< 1.60), those of  Ishiguro et al. and also the results 
of a good calculation based on the Hartree-Fock theory [17]. 

Electron Density Maps 

To provide a more visual description of molecules in electric fields electron 
density maps were obtained for the Hz molecule in the presence of both parallel 
and perpendicular fields. They are to be compared with that of the unperturbed 
molecule which is also presented. 

To prepare a contour plot the spinless first order density matrix (normalized 
to 2) was evaluated and diagonalized resulting in the natural orbital expansion 
of the given wavefunction [11, 12]. Since the occupation number of the dominant 
natural orbital is two orders of magnitude greater than that of any other in the 
set, it is sufficient to plot twice the square of the dominant natural orbital. The 
magnitude of the field was taken to be 0.1 a.u. in each case, sufficiently large to 
show any distortion clearly, although somewhat too large for the effect to be due 
only to the polarisability. 
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I 1 
Fig. 1. Electron density map of the H 2 molecule. The contours correspond to densities of 0.05, 0.10, 
0.15 ... 0.35. (The angular character of the contours near the nuclei is due to the relatively large 

separation (0.1 a.u.) of the grid points in the contouring routine) 

I / 

Fig. 2. Electron density map of the H 2 molecule in a uniform electric field of 0.1 a.u. parallel to the 
internuclear axis (directed from left to right). The contours correspond to densities of 0.05, 0.10, 

0.15 ... 0.50 

The electron density map  of the unper turbed molecule is shown in Fig. 1, 
while Figs. 2 and 3 display the electron density in the presence of a field of 0.1 a.u. 
parallel to the molecular  axis and the resulting electron density difference re- 
spectively. This strong field has a marked effect, causing a very noticeable 
polarisation. It  is of interest to note that the electron density difference map is 
slightly asymmetrical,  i.e. the build-up of charge on the left nucleus is more  
localized than the depletion of charge on the other. The analogous  effect of a 
field of the same magni tude  perpendicular  to the internuclear axis, shown in 
Figs. 4 and 5, is much less marked.  To unders tand this we must  bear in mind 
that  the change in charge density occurs over a larger region, resulting in an 
induced dipole momen t  of similar magni tude  to the previous, i.e. parallel field, 
case. 
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/ 
Fig. 3. Change in the electron density as a result of the parallel electric field of 0.1 a.u. The contours 
correspond to densities of 0.02, 0.04, 0.06 ... 0.12 left of the nodal plane (zero density) and to -0.02, 

-0.04, -0.06 ... -0.12 on the right 

I / 

Fig. 4. The electron density in the presence of a uniform electric field of 0.1 a.u. perpendicular to the 
internuclear axis (directed upwards). The contours are 0.05, 0.10, 0.15 ... 0.35 

Discussion 

T h e  resul ts  of  o u r  ca lcu la t ions ,  as s u m m a r i z e d  in  T a b l e  4, c o m p a r e  very  
f a v o u r a b l y  wi th  the accu ra t e  resul ts  of  Ko~os a n d  W o l n i e w i c z  [6] ,  despi te  the  
m u c h  s imple r  n a t u r e  of the  w a v e f u n c t i o n s  used  in  ou r  work.  It  is also very  
gra t i fy ing  t ha t  n o t  o n l y  the  po la r i sab i l i t i e s  b u t  their  g rad ien t s  too  agree well  wi th  

the  accu ra t e  va lues  of  the  a b o v e  au tho r s .  
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/ 
Fig. 5. Change in the electron density as a result of the perpendicular field of 0.1 a.u. The contours 
correspond to densities of 0.002, 0.004, 0.006, 0.008, 0.010; separated by a nodal plane from the 

contours -0002, -0.004, -0.006 ..k -0.0]4. The last set of contours encircle the nuclei 

In the calculation of ell angular correlation in the total wavefunctions was 
neglected (the basis set contained only a-type molecular orbitals) as it was ex- 
pected to have little effect on all" This is borne out by our results as we believe 
the value of 6.399 to be very close to the limiting value for alL, obtainable by the 
use of a complete a basis. Some angular correlation is allowed for in the wave- 
functions used in the calculation of ~• by including nuxnux, ~onox and a~nox 
type configurations in the perturbed wavefunctions. In all our calculations we 
found it important  to use all the possible configurations, i.e. employ a full CI 
treatment, to ensure satisfactory convergence for cql or e L. 

The results of Wilkins and Taylor [17], also given in Table 4, are certainly 
very good and their work shows the full potential of the Hartree-Fock method. 
Despite the warnings of Kolker and Karplus [3] all was not calculated to be 
too high, although a_~ was a little high. Their calculations did, however, allow 
for some electron correlation. 

We feel that in the light of the present work and that of Wilkins and 
Taylor it should be possible to obtain fairly accurate polarisabilities and 
polarisability gradients for larger molecules too using MCSCF wavefuncfions 
which are more accurate than the conventional HFSCF wavefunctions and little 
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more difficult to handle. We hope to carry out such calculations for molecules as 
complex as N2 and CO with success. 
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